CPEN 333: System Software Engineering

Amazoom Automated Warehouse

December 8 2021

Oon Chu Lip 94755584
Anoush Sepehri 66723735
Gurmehak Pannu 87263455

Hayato Terao 23227598



Executive Summary

Attached is the documentation for the proposed Amazoom Warehouse Automation System. The
system can be broken down into three components: the customers (client), server, and warehouses.
The customer uses an intuitive user interface for ordering items. Within the customer interface, the
user can see all available products, select certain items, and submit an order. Once the order is
submitted, the customer can keep track of whether the order has been accepted, currently being
processed, or is out for delivery. The server acts as the interface between the customers and the
warehouses. The server keeps track of all warehouses and customers actively connected and
dispatches order requests to the correct warehouse. The warehouse includes a user interface for the
corresponding manager to monitor. In the user interface, the manager can keep track of orders that
are accepted, actively being processed, or delivered, as well as the status of robots in the
warehouse. The user interface also provides a tracker for the current inventory on the shelves, as
well as the estimated inventory based on the trucks that have been ordered and are on their way to
the docks.

The proposed Amazoom automation system provides several advantages when implemented. The
customer is provided with real-time information of the available items and their inventory to order.
The server operates completely autonomously and directs customer’s orders to the appropriate
warehouse. The server can keep track of any number of customers, as well as any number of
warehouses to achieve this. In the warehouse automation program, a dynamic number of robots can
be selected. If many orders are requested, the manager can increase the number of robots. If there
are not many orders requested, the manager can reduce the number of active robots, thus improving
efficiency. The user interface also provides a comprehensive list of information regarding active
robots, their statuses (i.e. picking up item or dropping off item), their function (i.e. restocking shelves
or preparing a delivery), as well as what they are currently carrying. An animated layout of the
warehouse is also presented to monitor their position in real-time. Lastly, the inventory is
autonomously monitored and anytime a product becomes low in stock, restocking trucks with that
product are automatically sent to the docks. This eliminates the need for the warehouse managers to
monitor inventory and always ensures that the warehouse is stocked with enough products.

The proposed warehouse automation program for Amazoom can be integrated into existing
warehouses to greatly improve operation. Deliveries, warehouse inventories, autonomous robots can
all be monitored by a warehouse manager through a simple and intuitive graphical user interface.
The provided server/client software also makes it extremely easy for the customer to order items and
will thus bring in more revenue compared to competitors. Lastly, the final system can easily be
scaled up to accommodate multiple warehouses and multiple customers placing orders at the same
time.



Table of Content

High-level Overview

Use Cases
Checking warehouse status
Adding product to warehouse
Removing product from warehouse
Adding and removing robot to/from warehouse
Restocking a product
Processing an order
Updating the status of an order
Ordering a product

User Interface

Technology Stack

Communication Protocol

Warehouse Logic

Robot Logic

Class Diagram

Test Plan

©O© 00 O A W WWWDNDNDNDDN -

—_ A A
B WON -



High-level Overview

Customers connect to the server through a customer user interface. They place orders that are sent
to a server which controls which warehouse will receive the order. Depending on the products in the
order, a warehouse in the network will receive it (or part of it) and begin autonomously preparing it
through the use of Amazoom robots. Order statuses are constantly being relayed back to the
customer when the order has been accepted, in progress, and out for delivery. The high-level
overview of the system is shown in Fig. 1.

— Send orders — Receive orders
« Receive order status « Send order status

Controls information flow
between customers and
warehouses

Figure 1: Object Interaction Diagram



Use Cases

The use cases for the automated warehouse system are described below and shown in Fig. 2.

Checking warehouse status

Benefit e Manager can check the status of the warehouse including the inventory,
number of robots, each robot’s status, and order histories
Interaction e Manager opens the admin user interface
e Central computer sends information of the inventory, robot status, and list of
processed orders to the Ul
Effects e Admin Ul is updated

Adding product to warehouse

Benefit

Customer gets the newest information of all available products

Interaction

Manager enters name, weight, and volume of product to be added
Warehouse checks to see if a product of same name does not exist in the
warehouse

If not, adds the new product to the inventory database, assign a shelf to the
new product, and places an order for restocking the new product

Send updated inventory information to the customers

Effects

Inventory database of the warehouse is updated
Shelf database of the warehouse is updated
Inventory database of the server is updated

Removing product from warehouse

Benefit e Customer gets the newest information of all available products
Interaction e Manager selects the product to removed from the list of products
e Remove the product from the inventory database
e Send updated inventory information to the client
Effects e Inventory database of the warehouse is updated

Inventory database of the server is updated




Adding and removing robot to/from warehouse

Benefit

e Number of robots in the warehouse is changed to control operation speed

and efficiency

Interaction

Manager selects to add or remove a robot from a warehouse

If add, adds a new robot to the warehouse

If remove, waits until there is one robot not working on a task and removes
from the warehouse

Effects

List of robots in central computer is updated

Restocking a product

Benefit e Product is restocked
Interaction e Central computer checks if there are any shelves that can stock more of the
product assigned to the shelf
e |If there is, requests a restocking truck with specified numbers of specified
products
e Robot moves products from restocking truck to the shelves
Effects e Inventory database in the server is updated

Shelf database of the warehouse is updated

Processing an

order

Benefit

e Customer receives the products ordered

Interaction

Warehouse checks if the order can be fulfilled

If it can, send commands to robot and request delivery truck

Robots pick up specified numbers of specified products from the shelves and
transport them to the delivery truck

Dispatch delivery truck when robot is done stocking

Effects

Shelf database of the warehouse is updated
Order list of the warehouse is updated

Updating the status of an order

Benefit e Customer receives the status of an order
Interaction e Warehouse checks if the order received can be fulfilled
e Ifit can, update to “Accepted”. Else, update to “Denied”
e Warehouse gives commands to the robots and updates the status to “In
progress”
e When delivery truck dispatches, update to “Delivered”
Effects e Order list of the warehouse is updated




Ordering a product

Benefit e Customer receives the ordered product if accepted

Interaction e Customer enters the name and quantity of the product to order

Customer places an order

e If order can be fulfilled by any of the available warehouses, order is accepted
by the warehouse and the product is sent to the customer

e Update inventory status of the warehouse

Effects Inventory status of the applicable warehouse is updated
Order list of the warehouse is updated
Robots in warehouses moves to pick the products from the shelves

A delivery truck is ordered to deliver the products to the customer

0

/ Check Warehouse
Status

Add/Remove Product

0

/\

Manager

Add/Remove Robot

/ Restock Product

0

0

Process Orders

Central
Computer

0

Update Order Status

O

Order Product

Customer

Figure 2: Use Case Diagram



User Interface

The user interface for the customer is shown in Fig. 3. Through this interface, the customer can
connect to the server and place an order of a product with an associated quantity. Furthermore, the
customer can observe the items available with their maximum quantities and the history statuses of

all previous orders.

D |2 | P [127.00.1] Port [8911

Connect To Server

Please place your order here

Product [Mango ay [s00 I

| Order Product |
Iltems Available

Name Quantity A

500

Melon 55

Banana 833 o
Order Status

Id Product Quantity Status

Mango 500 Accepted

Figure 3: Customer Interface

The interface for the server is shown in Fig. 4. Through this interface, the admin can set up the
server. Moreover, the admin can observe which warehouses and clients are currently connected to

this server.

gl Amazoom Server <
P [127.001
Pot 8911
Warehouse Client
1 2

Figure 4: Server Interface



The manager interface for the warehouse is shown in Fig. 5 . When the warehouse is started, the
manager can choose the dimension of the warehouse, the number of docks and the number of
robots. The manager can also choose a file to load the initial inventory. After the warehouse is
started, the manager can connect to the server.

Within the ‘Robots’ table, the manager can observe the IDs of the robots deployed, which products
are being carried by each robot and how many of each product. The manager can also observe the
statuses of the robots through their colors. White indicates the robot is inactive; red indicates the
robot is en route to picking up product (from truck/shelf); yellow indicates the robot is en route to
dropping off product (to truck/shelf); green indicates the robot is going back home. Besides, the
manager can add or remove robots depending on the number of orders being processed.

Within the ‘Inventory’ table, the manager can observe the products available along with their
estimated and actual quantities. The difference between estimated and actual quantities is that the
former describes the products being ordered/delivered but have not reached the
warehouse/customer while the latter describes the products currently on the shelves. The manager
can also observe the statuses of the products through their colors. Green indicates the estimated
quantity matches the actual quantity; red indicates estimated quantity is more than actual quantity
(product is scheduled for restocking); yellow indicates the estimated quantity is less than actual
quantity (product is scheduled for delivery). Also, the manager can add or remove products within
the inventory.

Within the ‘Orders’ table, the manager can observe the IDs of all of the previous orders, the statuses
of each order (Denied, Accepted, In Progress, Delivered), which products are ordered and how many
of each product. The difference between Accepted and In Progress statuses is that the former
describes that a delivery truck is scheduled for docking while the latter describes that a robot is
dispatched for carrying the order. For testing purposes, the manager can submit a random order to
verify the functionality of the warehouse.

Within the map, the manager can observe the location of active robots and the location of docks. The
manager can also observe the type of the robots through their colors. Red indicates the robot is
assigned for restocking while orange indicates the robot is assigned for delivery. The robot moves in
the clockwise direction to prevent collision. The top-left location of the map is the home for the robots
(imagine there is a door on the left of the home cell that opens to the parking space of the robots).
The robot begins from home, picks up product from the truck or shelf, drops off product to the truck
or shelf and goes back to home.



a5l Amazoom Warehouse Portal

Warehouse |D ‘1 Server IP 127001 Server Port &
Test Random Order

Robots Remove Robat | |nyentory | Add/Remove ltem  Orders
Id Product Quantity A Product EstimatedCty ~ ActualGty =) Order: 2000

Mango 250 500 0 ;!;Zirlr;g;ogmss
1 Empty 0 Melon 55 55
2 | Empty 0 Banana 83 £
3 Empty 0 Durian 14 14
4 ' Empty 0 Preapple 62 62
5 Empty 0 v| |Biackbeny 40816 40816

All images are obtained under Creative Commons License

Figure 5: Warehouse Interface




Technology Stack

All codes are written in C# with the .NET framework. The .NET framework can be used to develop
codes for a variety of applications including systems we developed for the Amazoom automation
system. It can also run in multiple OS so it is highly flexible.

SimpleTCP was used for server/client socket communication. One of the reasons for choosing
SimpleTCP over ASP.NET or other framework is that the team was more familiar with SimpleTCP
and given the time constraint, the team decided to pursue working with SimpleTCP. Furthermore, by
working with lower-level socket communication code with SimpleTCP, the team decided that this will
allow the team to modify the code with higher flexibility.

Windows Form was used to design the user interfaces for the manager and the customers. It is very
intuitive to use and design a Ul with Windows Form and because all team members had experience
using it, the team decided to use Windows Form.



Communication Protocol

The communication between warehouse, server and client (customer) is achieved through TCP/IP. In
our case, the TCP/IP server is the server while the TCP/IP client is the warehouse and client. Using
simpleTCP package, we can use C# String to communicate between warehouse, server and client.
To differentiate different types of message send, we develop a communication protocol with the
message format as shown.

“Command/Sender/Receiver/Payload\r”

where,
Command: type of payload
Sender: sender of payload
Receiver: receiver of payload
Payload: content of message

Whenever a field is not required, we use ‘-’ to denote such a field as null. Using this communication
protocol, the warehouse and client can send messages to the server. The server will interpret the
message and then broadcast a new message to all of its TCP clients (both warehouse and client). All
of the TCP clients filter the message based on its receiver to decide who should interpret the
message. The sequence diagram for the communication between warehouse, server and client is
shown in Fig. 6 with Table 1 describing each of the communication protocols.

Server Warehouse
Customer
Registering of
Client/Warehouse ) _
Create > Client Start
Client Start-
<——Client Receive Inventory.
New Product
Product
Placement/Removal <——Client Receive Inventory.
Delete Product.
<—Client Receive Inventory.
Place Order. >
Order Placement Client Send Order.
Receive Ord
Send Ord:
<———Client Receive Order-
< Receive Order Status.

Stopping of
Client/Warehouse
Destre

Client Stop St

X

Figure 6: Sequence Diagram for Communication between Warehouse, Server and Client


Oon Chu Lip
Stopping of
Client/Warehouse


Table 1: Communication protocol

Title

Direction

Format

Client Start

Client->Server

“ClientStart/[Client ID]/-/-”
Server registers new client.
Client receives inventory from server through ‘Client Receive Inventory’.

Warehouse Start

Warehouse->Server

“WarehouseStart/[Warehouse ID]/-/Product*Quantity,...,”

Server registers new warehouse and associated warehouse inventory.
Clients receive updated inventory from the server through ‘Client Receive
Inventory’.

Client Receive
Inventory

Server->All

“InventoryToClient/-/-/Product*Quantity,...,”
All clients receive inventory from the server whenever a warehouse is
added/removed or product is added/removed within a warehouse.

Warehouse New
Product

Warehouse->Server

“WarehouseNewProduct/[Warehouse |ID]/-/Product*Quantity”

Server receives added product from warehouse.

Clients receive updated inventory from the server through ‘Client Receive
Inventory’.

Warehouse Delete
Product

Warehouse->Server

“WarehouseDeleteProduct/[Warehouse ID]/-/Product*Quantity”

Server receives deleted product from warehouse.

Clients receive updated inventory from the server through ‘Client Receive
Inventory’.

Client Delete Product

Server->All

“ClientDeleteProduct/-/-/Product*Quantity”
All clients receive deleted products from the server.

Client Send Order

Client->Server

“OrderFromClient/[Order ID}/-/Product*Quantity”
Server receives a new order from the client which will be dispatched to the
appropriate warehouse based on the ordered product.

Warehouse Receive
Order

Server->All

“OrderToWarehouse/[Order ID]/[Warehouse ID]/Product*Quantity”
Warehouse receives a new order from the server where the ordered product
exists in the inventory of the warehouse.

Warehouse Send Order

Warehouse->Server

“OrderFromWarehouse/-/[Order |ID]/Status”
Server receives order status from the warehouse which will be dispatched to
all of the clients.

Client Receive Order

Server->All

“OrderToClient/-/[Order ID]/Status”
Client receives order status from the server.

Client Stop

Client->Server

“ClientStop/[Client ID}/-/-"
Server unregisters client.

Warehouse Stop

Warehouse->Server

“WarehouseStop/[Warehouse ID]/-/-"

Server unregisters warehouse.

Clients receive updated inventory from the server through ‘Client Receive
Inventory’.

10




Warehouse Logic
The logic for delivery and restocking in the warehouse is shown in Fig. 7 and Fig. 8 respectively.

Server Central Computer: DeliveryTruck: Robot: Shelf:
computer deliveryTruck robot shelf
Customer
1: Order Product
1.1: Check
1.1.1: Order Status D Inventory
alt
1.2: Order from Customer
[status == accepted] 1.3: Check
D Inventory
1.3.2: Order Status 1.3.1: Order Status
alt
1.4: Request Delivery Truck
[status == accepted]
Loop
['Dock.isBusy()]
1.5.1: Delivery Truck Arrived
|l ——————————]
Loop
['deliveryTruck.IsOrdersFulfilled()]
1.6: Move Product to Truck 1.6.1: Remove
Product
I 1.6.2: Put Product
1.7: Dispatch Truck l
—————
1.8: Order Status
1.8.1: Order Status
Figure 7: Sequence Diagram for Delivery
Central Computer: Inventory: RestockingTruck: Robot: Shelf:
computer inventory restockingTruck robot shelf

1: Check Inventory

1.1:info '

2: Request products

alt

[linventory.isFull()]

Loop | .

['Dock.isBusy()]

3: Wait
3.1: Restocking Truck Arrived
Loop |

['restockingTruck.isEmpty()]

4: Remove product
———» | 4.1: Add product .

5: Dispatch Truck -

Figure 8: Sequence Diagram for Restocking



Robot Logic

The logic for robots in the warehouse is shown in Fig. 9.

Raobot Activity Diagram

[Start Robot Thiead]

(=
&

[Reciewe O]

I {Restocking Order] O {Delivery Crder]

ﬁ“‘(ﬂ“"'m—@mm“"m—*? T

[Yes]

[erminge Thiesd]

Figure 9: Activity Diagram for Robot in Warehouse

12



Class Diagram

The class diagram for the warehouse is shown in Fig. 10.

Dock | Dok Amazoom Warehouse Class Diagram
Camm it
P
premrywm—Ty— +LocalionPoirt Trucks
+Truck Truek Truck
+Type: TruckType
CentralComputer +Maxvolume: double
+Mawieight; double
-maxSheliNum: int “2:"-"-‘"‘:"5“"1""-3“’;0'*’;“0
-maxShaliCap: double +CurrentProducts: Dictionary<Product nt>
Rabot Rabats 26 double +RemainingvolmaRequastedOnders: double
- “maxTruckValume: dauble +RemairingVoumeCLTentProducts: double
i int “maxTruckWeight: double +RemainingWeiphiRequestedOnlers: double
+MaxCapacity: double impendingOrders: ConcurranQuaus<Orders +Remalning el ghtCurentProducts: double
+Location: Poant i
processedOrders: List<Orders -
S Febois e Wap nOrterstrp) osl
¥ 3 T I
Produrt TupcProduct P +isDrdersFullled(): buol
-cammands: CancurrentQueue <Campuier ToRobal Commands ‘:gﬁaﬁ;dgﬂ;rmmeﬁmen:u;wl "
-map: Map -tlocks: List<Dock> b roduct: Froduct,quanity: in
-snet: Snet o steThreats +RemovePreductiproduct: Product guaniity: )
~comm: Comm “trucks: ConcurentQueuesTrucks
-ative: bool —{ -robets: List<Rabar
~deday: const int -roboaProcs: List<Thread:
“rohciCammarts: ConcuremGuoeue<Computer TaRoboCammand >
-restucking: Th
GEIC - Camputer mmand
. : -dlelivering: Thread
GetPath{dest Pomnt): List<Point= - Ma
“MoveRobotjpath: List<Paint=): vaid oartwhobots: Thread Map
Computer memendjovold +warehoussd: nt
é‘:uq;;:mn e -SSEIVerconnected: noal _
-StockShellFromRobosframmand: ComputerToRoboiCommand):void teptliant; SmpaTCR SmplaTepClient
+ThraadProc(): woid
R “Gethumabats{yint
' e it maShelCap: dadble) ~Checkilirrive(current:Paint goal Point) bool
8 ’ ; +GeneratePath(start Pont,end:point,path: out
-ReqisterProductsifilename: stringl: voud List<Paint=]:beal
e +RemavrRnbal(): void
tory -~ +dlRabati): void
! -ReqisteDocks(map: Map,numDock: int)
< Lt : it a: double, : Point
CancurentueeCamputer ToRabatCommands, map: kap, shelf: prrs—
o Shell,comn: Comm). veid R it
+Add{product Product guaniity: int :
*-HewEg'vE[[IJmﬂuul ,I;MTL:QUH;‘I:.]‘,.M] -RequestRestock Truck{uck: Truck): vold +Calumn int
rcnedcpmmcm[mmm-mmm'mmw nt):bocd -RequastDelvaryTrackiruck: Trck): void +ShalfSide: ShelfSide
ohoad . o iy -EnqueueCammand ToRabal(productData +SheliNurn: it
. o KeyvaliePair-Product int=, dock: Dock): vaid
) ;
. -SetDrderSianisiorar: Oroary: void
I}
s1ring): boal -ResinckingProc() void
-DefveringProc(). vaid
-DockTruckProciDock: Dock): vaid
et -0 ohjcte; SimpleTCR Message]
+Stast) : waid
+ProductkeyDatabasa: Shett +ConneerTaSarerwarehalssld: i senerp: siring,serverPort int):
ConcurraniD tioal
+PointKeyDatabase: +OisconnactEromSanver): void
C i it tring, weight double, valurme doubie)
“maimumCapaity: double +RemaveFrominventanname:string): bosl
+AGdNEWRaInt{point Point): vaid Team Members:
+And{pomt Foin, product Product)baal
+Remauelpoint Paint produ Product): baol .
+GetPontiproduct Product, paing: out Pont): bool — FProduct M1 Chu Lip Oon
P it ing): N h
+GREmptyPoiniipant: aut Paing: bacl “Name: sting ot - Gurmehak Pannu
+akime: double § :
et double +Statiss: CroerStats Hayato Terao
Anoush Sepehri
+Acd(prodeut: Product quantity: int): void

Figure 10: Class Diagram for Warehouse

13



Test Plan

Due to time constraint, the team decided to perform system-level integration testing instead of
module-level unit testing as we predict most errors would occur during integration. The test cases for
warehouse, server and client are described in Tables 2, 3 and 4 respectively.

Table 2: Test Cases for Warehouse Functions

ID Objective and Procedures Status
1.1 Warehouse Initialization Passed
A. Start the warehouse with the following parameters: December 7 2021
a. Size x: 3, Size y: 3, Number of docks: 1, Number of robots: 1
B. Start the warehouse with inventory named ‘testProduct.ixt’.
C. Verify the warehouse generated is accurate.
D. Verify the inventory is fully restocked after a while.
E. Restart the warehouse with the following parameters:
a. Size x: 8, Size y: 4, Number of docks: 2, Number of robots: 4
F. Start the warehouse with inventory named ‘testProduct.txt’.
G. Verify the warehouse generated is accurate.
H. Verify the inventory is fully restocked after a while.
1.2 Inventory Initialization and Restocking Process Passed
A. Continue from 1.1.E, start the warehouse with the inventory named December 7 2021
‘fruitsProduct.txt’ with 19 different types of products of various weights.
B. \Verify the inventory generated is accurate.
C. Verify the inventory is initially empty after the warehouse is started.
D. Verify the inventory is fully restocked after a while.
1.3 Ordering Process Passed
A. Continue from 1.2.D, press the ‘Test Random Order’ button which December 7 2021
generates an order with a random number of products with a random
number of quantities. Such an order may be ‘Denied’ due to exceeding the
weight of the truck. Repeat until such order is ‘Accepted’.
B. Verify the quantities of the products within the inventory are reduced.
C. Verify the order is ‘InProgress’ then ‘Delivered.
D. Verify the inventory is fully restocked after a while.
1.4 Add and Remove Robot Passed
A. Continue from 1.2.D, increase the number of robots from 4 to 6. December 7 2021
B. Verify the number of robots is accurate.
C. Press the ‘Test Random Order’ button to generate an order.
D. During ordering and restocking, increase the number of robots from 6 to 8
and back to 6.
E. Verify the number of robots is accurate during this process.
F. After the robot has fully restocked the inventory and is inactive, decrease
the number of robots from 6 to 4.
G. Verify the number of robots is accurate.
1.5 Add and Remove Item Passed
A. Continue from 1.2.D, add a new product with the following parameter, December 7 2021
a. Name: MiracleBerry, Weight: 0.1kg, Volume: 0.01m3
B. \Verity this product is added to the inventory and has initial quantity of zero.
C. Verify this product is fully restocked after a while.
D. Remove this product from the inventory.
E. Verify this product is removed from the inventory.

14




Table 3: Test Cases for Server Functions

ID

Objective and Procedure

Status

2.1

Warehouse Registration

A

B.

moo

—zem

Start the server with the following parameters:
a. 1P:127.0.0.1, Port: 8911
Start a warehouse with the following parameters:
a. Size x: 8, Size y: 4, Number of docks: 2, Number of robots: 4
b. Start the warehouse with inventory named ‘fruitsProduct.txt’.
Connect the warehouse to the server with ID of 1.
Verify the warehouse is registered by the server.
Start another warehouse with the following parameters:
a. Size x: 6, Size y: 3, Number of docks: 1, Number of robots: 2
b. Start the warehouse with inventory named ‘testProduct.txt’.
Connect the warehouse to the server of ID of 2.
Verify the warehouse is registered by the server.
Closes the warehouses.
Verify the warehouses are no longer registered by the server.

Passed
December 7 2021

22

Client Registration

mmoow»

Continue from 2.1.1G, start and connect a client to the server with ID of 1.
Verify the client is registered by the server.

Start and connect another client to the server of ID of 2.

Verify the client is registered by the server.

Closes the clients.

Verify the clients are no longer registered by the server.

Passed
December 7 2021

Table 4: Test Cases for Client Functions

cow »

@mm

Continue from 3.1.B, order the following product from Client 1.

a. Name: Mango, Quantity: 500 (Warehouse 1)
Verify the order status is ‘Accepted’, ‘InProgress’ and then ‘Delivered’.
Ensure Client 2 does not receive any order statuses.
Order the following product from Client 2.

a. Name: FryingPan, Quantity: 27 (Warehouse 2)
Verify the order status is ‘Accepted’, ‘InProgress’ and then ‘Delivered’.
Ensure Client 1 does not receive any order statuses.
Repeat this process again after both of the warehouses have fully
restocked.

ID Objective and Procedure Status
3.1 Inventory Display Passed
A. Continue from 2.2.D, we have two warehouses with unique products and December 7 2021
two clients connected to the server.
B. \Verify both the clients display combined inventory information from both of
the warehouses
3.2 Ordering Process Passed

December 7 2021

15




